• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Bowdoin Science Journal

  • Home
  • About
    • Our Mission
    • Our Staff
  • Sections
    • Biology
    • Chemistry and Biochemistry
    • Math and Physics
    • Computer Science and Technology
    • Environmental Science and EOS
    • Honors Projects
    • Psychology and Neuroscience
  • Contact Us
  • Fun Links
  • Subscribe

Madina Sotvoldieva

Computer Vision Ethics

May 4, 2025 by Madina Sotvoldieva

Computer vision (CV) is a field of computer science that allows computers to “see” or, in more technical terms, recognize, analyze, and respond to visual data, such as videos and images. CV is widely used in our daily lives, from something as simple as recognizing handwritten text to something as complex as analyzing and interpreting MRI scans. With the advent of AI in the last few years, CV has also been improving rapidly. However, just like any subfield of AI nowadays, CV has its own set of ethical, social, and political implications, especially when used to analyze people’s visual data.

Although CV has been around for some time, there is limited work on its ethical limitations in the general AI field. Among the existing literature, authors categorized six ethical themes, which are espionage, identity theft, malicious attacks, copyright infringement, discrimination, and misinformation [1]. As seen in Figure 1, one of the main CV applications is face recognition, which could also lead to issues of error, function creep (the expansion of technology beyond its original purposes), and privacy. [2].

Computer Vision technologies related to Identity Theft
Figure 1: Specific applications of CV that could be used for Identity Theft.

To discuss CV’s ethics, the authors of the article take a critical approach to evaluating the implications through the framework of power dynamics. The three types of power that are analyzed are dispositional, episodic, and systemic powers [3]. 

Dispositional Power

Dispositional power is defined as the ability to bring out a significant outcome [4]. When people gain that power, they feel empowered to explore new opportunities, and their scope of agency increases (they become more independent in their actions) [5]. However, CV can threaten this dispositional power in several ways, ultimately reducing people’s autonomy. 

One way CV disempowers people is by limiting their information control. Since CV works with both pre-existing and real-time camera footage, people might be often unaware that they are being recorded and often cannot avoid that. This means that technology makes it hard for people to control the data that is being gathered about them, and protecting their personal information might get as extreme as hiding their faces. 

Apart from people being limited in controlling what data is being gathered about them, advanced technologies make it extremely difficult for an average person to know what specific information can be retrieved from visual data. Another way CV might disempower people of following their own judgment is through communicating who they are for them (automatically inferring people’s race, gender, and mood), creating a forced moral environment (where people act from fear of being watched rather than their own intentions), and potentially leading to over-dependence on computers (e.g., relying on face recognition for emotion interpretations). 

In all these and other ways, CV undermines the foundation of dispositional power by limiting people’s ability to control their information, make independent decisions, express themselves, and act freely.

Episodic Power

Episodic power, or as often referred to as power-over, defines the direct exercise of power by one individual or group over another. CV can both give new power or improve the efficiency of existing one [6]. While this isn’t always a bad thing (for example, parents watching over children), problems arise when CV makes that control too invasive or one-sided—especially in ways that limit people’s freedom to act independently.

 With CV taking security cameras to the next level, opportunities such as baby-room monitoring or fall detection for elderly people open up to us. However, it also leads to the issues of surveillance automation, which can lead to over-enforcement in scales as small as private individuals to bigger corporations (workplaces, insurance companies, etc.). Another power dynamic shifts that need to be considered, for example, when the smart doorbells show far beyond the person at the door and might violate a neighbor’s privacy by creating peer-to-peer surveillance. 

These examples show that while CV may offer convenience or safety, it can also tip power balances in ways that reduce personal freedom and undermine one’s autonomy.

Systemic Power

Systematic power is not viewed as an individual exercise of power, but rather a set of societal norms and practices that affect people’s autonomy by determining what opportunities people have, what values they hold, and what choices they make. CV can strengthen the systematic power by making law enforcement more efficient through smart cameras and increase businesses’ profit through business intelligence tools. 

However, CV can also reinforce the pre-existing systematic societal injustices. One example of that might be flawed facial recognition, when the algorithms are more likely to recognize White people and males [7], which led to a number of false arrests. This might lead to people receiving unequal opportunities (when biased systems are used for hiring process), or harm their self-worth (when falsely recognized as a criminal). 

Another matter of systematic power is the environmental cost of CV. AI systems rely on vast amounts of data, which requires intensive energy for processing and storage. As societies become increasingly dependent on AI technologies like CV, those trying to protect the environment have little ability to resist or reshape these damaging practices. The power lies with tech companies and industries, leaving citizens without the means to challenge the system. When the system becomes harder to challenge or change, that’s when the ethical concerns regarding CV arise.

Conclusion

Computer Vision is a powerful tool that keeps evolving each year. We already see numerous applications of it in our daily lives, starting from the self-checkouts in the stores and smart doorbells to autonomous vehicles and tumor detections. With the potential that CV holds in improving and making our lives safer, there are a number of ethical limitations that should be considered. We need to critically examine how CV affects people’s autonomy, might cause one-sided power dynamics, and reinforces societal prejudices. As we are rapidly transitioning into the AI-driven world, there is more to come in the field of computer vision. However, in the pursuit of innovation, we should ensure the progress does not come at the cost of our ethical values.

References:

[1] Lauronen, M.: Ethical issues in topical computer vision applications. Information Systems, Master’s Thesis. University of Jyväskylä. (2017). https://jyx.jyu.fi/bitstream/handle/123456789/55806/URN%3aNBN%3afi%3ajyu-201711084167.pdf?sequence=1&isAllowed=y

[2] Brey, P.: Ethical aspects of facial recognition systems in public places. J. Inf. Commun. Ethics Soc. 2(2), 97–109 (2004). https:// doi.org/10.1108/14779960480000246

[3] Haugaard, M.: Power: a “family resemblance concept.” Eur. J. Cult. Stud. 13(4), 419–438 (2010)

[4] Morriss, P.: Power: a philosophical analysis. Manchester University Press, Manchester, New York (2002)

[5] Morriss, P.: Power: a philosophical analysis. Manchester University Press, Manchester, New York (2002)

[6] Brey, P.: Ethical aspects of facial recognition systems in public places. J. Inf. Commun. Ethics Soc. 2(2), 97–109 (2004). https://doi.org/10.1108/14779960480000246

[7] Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. Conference on Fairness, Accountability, and Transparency, pp. 77–91 (2018) Coeckelbergh, M.: AI ethics. MIT Press (2020)

Filed Under: Computer Science and Tech, Science Tagged With: AI, AI ethics, artificial intelligence, Computer Science and Tech, Computer Vision, Ethics, Technology

AI – save or ruin the environment?

December 8, 2024 by Madina Sotvoldieva

With the fast speed that AI is currently developing, it has the potential to alleviate one of the most pressing problems—climate change. AI applications, such as smart electricity grids and sustainable agriculture, are predicted to mitigate environmental issues. On the flip side, the integration of AI in this field can also be counterproductive because of the high energy demand of the systems. If AI helps us to transition to a more sustainable lifestyle, the question is, at what cost?

The last decade saw exponential growth in data demand and the development of Large Language Models (LLMs)–computational models such as ChatGPT, designed to generate natural language. The algorithms resulted in increased energy consumption because of the big data volumes and computational power required, as well as increased water consumption needed to refrigerate data centers with that data. This consequently leads to higher greenhouse gas emissions (Fig.1). For example, the training of GPT-3 on a 500 billion-word database produced around 550 tons of carbon dioxide, equivalent to flying 33 times from Australia to the UK [1]. Moreover, information and communications technology (ICT) accounts for 3.9% of global greenhouse gas emissions (surpassing global air travel) [2]. As the number of training parameters grows, so does the energy consumption. It is expected to reach over 30% of the world’s total energy consumption by 2030. These environmental concerns about AI implementation led to a new term—Green AI.

Fig 1: CO2 equivalent emissions for training ML models (blue) and real-life cases (violet). In brackets, the billions of parameters are adjusted for each model [3].

Green algorithms are defined in two ways: green-in and green-by AI (Fig. 2). Algorithms that support the use of technology to tackle environmental issues are referred to as green-by AI. Green-in-design algorithms (green-in AI), on the other hand, are those that maximize energy efficiency to reduce the environmental impact of AI. 

 

Fig. 2. Overview of green-in vs. green-by algorithms.

 

Green-by AI has the potential to reduce greenhouse gas emissions by enhancing efficiency across many sectors, such as agriculture, biodiversity management, transportation, smart mobility, etc. 

  • Energy Efficiency. Machine Learning (ML) algorithms can optimize heating, air conditioning, and lighting by analyzing the data from the smart buildings, making them more energy efficient [4][5]. 
  • Smart Mobility. AI can predict and avoid traffic congestion by analyzing the current traffic patterns and optimizing routes. Moreover, ML contributes to Autonomous Vehicles by executing tasks like road following and obstacle detection, which improves overall road safety [6].
  • Sustainable agriculture. Data from sensors and satellites analyzed by ML can give farmers insights into crop health, soil conditions, and irrigation needs. This enables them to use the resources with precision and reduce environmental impacts. Moreover, predictive analytics minimize crop loss by allowing farmers to aid the diseases on time [7].
  • Climate Change. Computer-vision technologies can detect methane leaks in gas pipes, reducing emissions from fossil fuels. AI also plays a crucial role in reducing electricity usage by predicting demand and supply from solar and wind power.
  • Environmental Policies. AI’s ability to process data, identify trends, and predict outcomes will enable policymakers to come up with effective strategies to combat environmental issues [8].

Green-in AI, on the other hand, is an energy-efficient AI with a low carbon footprint, better quality data, and logical transparency. To ensure people’s trust, it offers clear and rational decision-making processes, thus also making it socially sustainable. Several promising approaches to reaching the green-in AI include algorithm, hardware, and data center optimization. Specifically, more efficient graphic processing units (GPUs) or parallelization (distributing computation among several processing cores) can reduce the environmental impacts of training AI. Anthony et al. proved that increasing the number of processing units to 15 will decrease greenhouse gas emissions [9]. However, the reduction in runtime must be significant enough for the parallelization method not to become counterproductive (when the execution time reduction is smaller than the increase in the number of cores, the emissions deteriorate). Other methods include computation at the locations where the data is collected to avoid data transmissions and limit the number of times an algorithm is run. 

Now that we know about AI’s impact and the ways to reduce it, what trends can we expect in the future? 

  • Hardware: Innovation in hardware design is focused on creating both eco-friendly and powerful AI accelerators, which can minimize energy consumption [10].
  • Neuromorphic computing is an emerging area in the computing technology field, aiming to create more efficient computing systems. It draws inspiration from the human brain, which performs complex tasks with much less energy than conventional computers. 
  • Energy-harvesting AI devices. Researchers are exploring the ways in which AI can harvest energy from its surroundings, for example from the lights or heat [11]. This way, AI can rely less on external power and become self-sufficient.

In conclusion, while AI holds great potential in alleviating many environmental issues, we should not forget about its own negative impact. While training AI models results in excessive greenhouse gas emissions, there are many ways to reduce energy consumption and make AI more environmentally friendly. Although we discussed several future trends in green-in AI, it is important to remember this field is still continuously evolving and new innovations will emerge in the future.

References:

[1] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, J. Dean, Carbon emissions and large neural network training, 2021, arXiv:2104.10350.

[2] Bran, Knowles. “ACM TCP TechBrief on Computing and Carbon Emissions.” Association for Computing Machinery, Nov. 2021  www.acm.org/media-center/2021/october/tpc-tech-brief-climate-change  

[3] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, and Jack Clark, “The AI Index 2024 Annual Report,” AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA, April 2024. 

[4] N. Milojevic-Dupont, F. Creutzig, Machine learning for geographically differentiated climate change mitigation in urban areas, Sustainable Cities Soc. 64 (2021) 102526.

[5] T.M. Ghazal, M.K. Hasan, M. Ahmad, H.M. Alzoubi, M. Alshurideh, Machine learning approaches for sustainable cities using internet of things, in: The Effect of Information Technology on Business and Marketing Intelligence Systems, Springer, 2023, pp. 1969–1986.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., End to end learning for self-driving cars, 2016, arXiv preprint arXiv:1604.07316. 

[7] R. Sharma, S.S. Kamble, A. Gunasekaran, V. Kumar, A. Kumar, A systematic literature review on machine learning applications for sustainable agriculture supply chain performance, Comput. Oper. Res. 119 (2020) 104926.

[8] N. Sánchez-Maroño, A. Rodríguez Arias, I. Lema-Lago, B. Guijarro-Berdiñas, A. Dumitru, A. Alonso-Betanzos, How agent-based modeling can help to foster sustainability projects, in: 26th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES, 2022.

[9] L.F.W. Anthony, B. Kanding, R. Selvan, Carbontracker: Tracking and predicting the carbon footprint of training deep learning models, 2020, arXiv preprint arXiv:2007.03051. 

[10] H. Rahmani, D. Shetty, M. Wagih, Y. Ghasempour, V. Palazzi, N.B. Carvalho, R. Correia, A. Costanzo, D. Vital, F. Alimenti, et al., Next-generation IoT devices: Sustainable eco-friendly manufacturing, energy harvesting, and wireless connectivity, IEEE J. Microw. 3 (1) (2023) 237–255.

[11]  Divya S., Panda S., Hajra S., Jeyaraj R., Paul A., Park S.H., Kim H.J., Oh T.H.

Smart data processing for energy harvesting systems using artificial intelligence

Filed Under: Computer Science and Tech Tagged With: AI, climate change, emissions, green-by AI, green-in AI, Language Models, sustainability, Technology

Primary Sidebar

CATEGORY CLOUD

Biology Chemistry and Biochemistry Computer Science and Tech Environmental Science and EOS Honors Projects Math and Physics Psychology and Neuroscience Science

RECENT POSTS

  • Floating Systems: Jellyfish and Evolving Nervous Systems May 22, 2025
  • Biological ChatGPT: Rewriting Life With Evo 2 May 4, 2025
  • Unsupervised Thematic Clustering for Genre Classification in Literary Texts May 4, 2025

FOLLOW US

  • Facebook
  • Twitter

Footer

TAGS

AI AI ethics Alzheimer's Disease antibiotics artificial intelligence bacteria Bathymetry Beavers Biology brain Cancer Biology Cell Biology Chemistry and Biochemistry Chlorofluorocarbons climate change Computer Science and Tech CRISPR Cytoskeleton Depression dreams epigenetics Ethics Genes honors Luis Vidali Marine Biology Marine Mammals Marine noise Medicine memory Montreal Protocol Moss neurobiology neuroscience Nutrients Ozone hole Plants Psychology and Neuroscience REM seabirds sleep student superintelligence Technology therapy

Copyright © 2025 · students.bowdoin.edu