• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Bowdoin Science Journal

  • Home
  • About
    • Our Mission
    • Our Staff
  • Sections
    • Biology
    • Chemistry and Biochemistry
    • Math and Physics
    • Computer Science and Technology
    • Environmental Science and EOS
    • Honors Projects
    • Psychology and Neuroscience
  • Contact Us
  • Fun Links
  • Subscribe

Chemistry and Biochemistry

Targeting the MYC Proto-Oncogene, BHLH Transcription Factor (MYC) interaction network in B-cell lymphoma via histone deacetylase 6 inhibition

November 11, 2022 by Emma K. Cheung '26

According to the World Health Organization (WHO), in 2020, cancer was responsible for the deaths of almost ten million people worldwide. Such statistics place cancer as a leading cause of death worldwide, second to heart disease. Cancer is when a series of mutations occurs in a cell, resulting in uncontrollable cellular division that eventually leads to interference in the function of vital organs. One of the more common types of cancer is lymphoma, the malignant growth of tumor cells of the lymphatic system. Current treatments for lymphoma include radiation therapy and chemotherapy, but these treatments can have drawbacks: they can be painful for the patient by killing healthy cells alongside cancer cells, and there is no guarantee that the treatments will completely eliminate all cancer cells. With a treatment that specifically targets the malignant cells, we can better treat lymphoma as well as other types of cancers.

MYC is a gene that when expressed in moderation, is responsible for maintaining cellular functions such as the cell cycle, apoptosis (programmed cell death), and protein production. It does so through “recruiting” enzymes such as histone acetyltransferases p300/CBP or the histone deacetylases (HDACs) to regulate expression of other genes. However, dysregulation of MYC expression can cause these cell functions to lose control as HDACs will have no means of regulation, genes to aid in the increase in cellular processes and pathways that would lead to the cell to become cancerous. MYC has also been found to be overexpressed in other types of cancers, such as uterine leiomyosarcoma.

The purpose of this project was to determine the effect of HDAC6 inhibitor Marbostat-100 (M-100) on oncogenic MYC expression levels in mice with MYC-induced aggressive B-cell lymphoma. In this experiment, mice with B-cell lymphoma as well as human B cell lymphoma cells were treated with various concentrations of M-100. It was found that all experimental concentrations of M-100 caused HDAC inhibition and reduction of MYC expression and protein levels, consequently inducing apoptosis in the murine and human cancer cells and statistically significantly increasing the mice’s survival rates. Therefore, MYC inhibition could be a possible therapeutic treatment for cancers like B-cell lymphoma.

Sources

https://www.nature.com/articles/s41388-022-02450-3

https://www.who.int/news-room/fact-sheets/detail/cancer

https://www.cancer.gov/about-cancer/treatment/types

Filed Under: Biology, Chemistry and Biochemistry

Immortality: a biological possibility

November 6, 2022 by Anika Sen '26

Immortality is biologically possible. It has been biologically possible ever since the discovery of the ‘immortal’ jellyfish Turritopsis. dohrnii in the Mediterranean Sea in 1883. This cnidarian is an exception to the normal cycle of life and death; they have an extra stage in their life cycle known as ‘rejuvenation’ where the mature medusa can metamorphose back into its juvenile form – as polyps. This is usually in response to damage or natural deterioration with age. If they are not eaten or killed by predators, they can rejuvenate and live forever. Therefore there could actually be an existing Turritopsis. dohrnii jellyfish that has lived since the time when dinosaurs roamed the Earth, as this species of jellyfish have been floating in the oceans since 66 million years ago. 

Fig 1: The immortal jellyfish: Turritopsis. dohrnii (American Museum of Natural History, 2015)

The diagram on the left of Figure 2 shows what the life cycle of a jellyfish normally is. The fertilized egg first grows into a small larva, known as a planula (Pascual-Torner, 2021). The planula the proceeds to ground itself into a solid surface and form a polyp where it develops a digestive system and reproduces asexually to form a colony (Pascual-Torner, 2021). A section of the polyp within the colony develops a new set of nerves and muscle, which can swim, grow and feed independently; eventually growing into a medusa, a full grown adult jellyfish which can reproduce sexually (Pascual-Torner, 2021). If not by being eaten or injured by a predator, old age is usually what kills these jellyfish (Pascual-Torner, 2021). 

Fig 2: The life cycles of Turritopsis. rubra (‘normal’ lifecycle) and Turritopsis. dohrnii  (Pascual-Torner, 2021)

Aging is generally governed by cellular senescence – formally defined as a state of cell cycle arrest where proliferating cells stop responding towards growth-promoting stimuli (Osterloff). This is usually in response to stresses such as telomere dysfunction and persistent DNA damage (Cell Signaling Technology). The number of senescent cells normally increases with age, negatively impacting other biological processes and impairs any potential for pluripotency – ability of a cell to differentiate into any type of specialized cell – and the possibility of regeneration. But this cnidarian species is able to challenge this trait and reverse their life cycle even after reaching sexual maturity, through a process called ontogeny reversal.

Comparative genomic studies have been conducted in hopes to find the genes involved in ontogeny reversal. In the study conducted by Pascual-Torner et al. (2021), the genes involved in aging and DNA repair were compared between Turritopsis. dohrnii and Turritopsis. rubra, which can’t rejuvenate at mature stages. Some of their findings suggested that Turritopsis. dohrnii may have “more efficient replicative mechanisms and repair systems” (Pascual-Torner et al., 2021). This includes the amplification of the genes POLD1 and POLA2, which encode for the enzyme DNA polymerase. This enzyme is involved in DNA replication, therefore its respective genes being amplified suggest enhanced replication in this cnidarian species. Furthermore, duplications to certain DNA repair genes such as XRCC5, GEN1, RAD51C, and MSH2 suggest more efficient DNA repair mechanisms (Pascual-Torner et al., 2021). A more efficient DNA repair mechanism reduces DNA damage and the triggers for cellular senescence, resulting in the slowing down of aging. In addition, there are also many other genomic differences noted by the study that also contribute to reducing the stressors for senescence that are not mentioned in this article. 

However, the ability Turritopsis. dohrnii has for ontogeny reversal implies that this jellyfish species additionally possesses some sort of cell reprogramming mechanism. To promote dedifferentiation, where cells grow in reverse from a differentiated stage to a less differentiated stage, there should be pathways that target the enzyme PRC2 (polycomb repression complex 2) and pluripotency related genes (Pascual-Torner et al., 2021). PRC2 catalyzes methylation of a specific set of histones to silence specific genes that enhance and maintain pluripotency in embryonic stem cells (Pascual-Torner et al., 2021). According to the same study, the silencing of PCR2 targets and activation of pluripotency targets was observed in Turritopsis. dohrnii (Pascual-Torner et al., 2021). Through these mechanisms, pluripotency is enhanced, leading the jellyfish to be able to form undifferentiated cells and thereby reversing back into its cyst stage, which is similar to its planula stage, as shown in Figure 2. 

It is mind-blowing that a mere floating sea creature is able to reverse its lifecycle and biologically be immortal. There is still a lot unknown about its process to being able to be immortal; scientists have only just started to uncover the basics from their genomic analysis. Maybe as scientists go deeper into uncovering Turritopsis. dohrnii’s strange immortality, we can start to think about whether we can transfer this ability to other creatures, even humans – or if we even want to? Now that immortality is actually a reality, do we want it to be a biological possibility for other creatures, for us? 

References

“Cellular Senescence.” Cell Signaling Technology, https://www.cellsignal.com/science-resources/overview-of-cellular-senescence. 

Matsumoto, Yui, and Maria Pia Miglietta. “Cellular Reprogramming and Immortality: Expression Profiling Reveals Putative Genes Involved in Turritopsis Dohrnii’s Life Cycle Reversal.” Genome Biology and Evolution, edited by Dennis Lavrov, vol. 13, no. 7, July 2021, p. evab136. DOI.org (Crossref), https://doi.org/10.1093/gbe/evab136.

Osterloff, Emily. “Immortal Jellyfish: The Secret to Cheating Death.” Natural History Museum, https://www.nhm.ac.uk/discover/immortal-jellyfish-secret-to-cheating-death.html. 

Pascual-Torner, Maria, et al. “Comparative Genomics of Mortal and Immortal Cnidarians Unveils Novel Keys behind Rejuvenation.” Proceedings of the National Academy of Sciences, vol. 119, no. 36, Sept. 2022, p. e2118763119. DOI.org (Crossref), https://doi.org/10.1073/pnas.2118763119.

“The ‘Immortal’ Jellyfish That Resets When Damaged: AMNH.” American Museum of Natural History, 2015, https://www.amnh.org/explore/news-blogs/on-exhibit-posts/the-immortal-jellyfish.

 

Filed Under: Biology, Chemistry and Biochemistry, Science

Small but Mighty: The Role of Micro-RNAs and Nanotechnology in Revolutionizing Cancer Treatment

November 6, 2022 by Sam Koegler '26

When you think of cancer, your mind may automatically jump to the terrifying realities of this disease: hair loss, pale skin, constant shivering, and nausea. All of these hallmarks of a cancer patient result from a current popular treatment regimen: chemotherapy. While these medications are effective for many cancer patients, they can be devastatingly hard to endure and are not always an option for every patient. Past cancer history and certain genetic mutations in tumor cells can lead to drug resistance that takes chemotherapy off the table as a treatment option. In an attempt to provide cancer patients with new medication options outside of chemotherapeutics, researchers have turned to an unassuming molecule: micro-RNA. 

Micro-RNAs (miRNAs) are short, non-coding sections of RNA that function in gene regulation cascades. Through binding to a certain region of DNA, these small biomolecules can suppress the translation of that gene into a protein. While this suppression process is a normal function of human gene regulation and protein production, dysregulation of miRNAs can lead to different levels of protein expression throughout a cell, disrupting regular maintenance processes. This dysregulation is often observed in cancer cells, as miRNAs can function as significant influencers of many hallmarks of cancer, such as cell proliferation and immortality (Ferdows, Bijan Emiliano, et al). This ability to influence cancer growth and metastasis makes miRNAs promising targets for treatments that slow the progression of tumors.

Due to the degradation of foreign RNAs in the human body, delivering miRNA treatments to target cells has proven difficult. In order to lessen this challenge, scientists have turned to nanotechnology to increase the efficacy of miRNA-targeted treatments. Nanotechnology encompasses many different organic and synthetic casings that prevent molecules from being degraded by the human body’s natural defense systems. Lipid-based nanoparticles often take the forefront of nanotechnology research. These particles are easily assimilated into the body because of their biological similarity to the lipid-based cell membrane. Cationic lipids are able to bind with the negatively charged phosphate groups in miRNA particles, creating a protective layer around these miRNA particles that can easily bind to target cells (Ferdows, Bijan Emiliano, et al). The biocompatibility found with lipid-based nanoparticles is expanded upon in extracellular vesicles, a type of molecule secreted by cells to facilitate intercellular communication. These lipid pockets are a promising target for miRNA delivery because they share many of the same biological and chemical qualities as their mother cell. Although organic nanoparticles are proving to be effective drug-delivery machines, researchers have also begun to examine the potential of using inorganic compounds to protect miRNAs from degradation. One such compound is gold-iron oxide nanoparticles (GIONS). In addition to the negatively charged GION surface that allows it to bind and transport miRNA, this nanoparticle class can also aid in the diagnosis of tumors. These particles appear on CT and MRI scans, and their appearance can help physicians determine where a tumor is located and how treatment should progress (Ferdows, Bijan Emiliano, et al).

While nanoparticle-based miRNA treatments have yet to hit mainstream cancer treatment plans, current research projects show that these medications have a promising future. In mice with transplanted lung tumors taken from human patients, cationic lipid particles have been used to deliver miRNA particles to study the effect of these treatments on patients with late-diagnosis lung cancer. Researchers used these lipid-based nanoparticles to deliver miRNA-660 to the MIR660, a gene responsible for enabling the activation of the crucial p53 tumor suppressor that results in the killing of cancer cells. In 8 weeks, the mice were shown to have 50% reduced tumor growth compared to controls, a promising result for applying this treatment in human lung cancer patients (Moro, Massimo, et al). 

GION-coated tumor-derived extracellular vesicles (TEVs) have also shown promising results as nanoparticles used in miRNA-based treatments for cancers such as breast cancer. Researchers have bound these particles to a type of naturally occurring miRNAs called anti-miRNA-21. This molecule suppresses oncomiR-21, a type of miRNA associated with assisting cancer development and growth by inhibiting apoptosis, a type of self-programmed cell death that occurs when a cell is functioning abnormally. OncomiR-21 deactivation enables a variety of proteins to regain function, allowing the cellular pathway that signals cell death to resume. When anti-miRNA-21 bound GION-TEVs were administered to breast cancer cells along with low levels of the chemotherapeutic doxorubicin, researchers found that the cells were killed almost three times quicker as compared to cells treated with doxorubicin alone (Bose RJC et al). This experimental result shows significant promise that nanoparticle-based miRNA treatments could be used in combination with chemotherapy in the future to help strengthen tumor cell apoptosis and reduce drug resistance that results from high doses of the same chemotherapeutic (Bose RJC et al). 

While these treatments show extremely significant promise, more research is needed to determine their efficacy in human patients. Specifically, inorganic nanoparticles such as GIONs require additional research to ensure their delivery is minimally toxic to human patients (Ferdows, Bijan Emiliano, et al). Fortunately, the results of current experiments demonstrate that nanoparticle-based miRNA cancer drugs could have a significant role in the future treatment of cancer patients. These treatments are minimally invasive and have the potential to allow physicians and researchers to target miRNAs to patient-specific genetic markers in tumor cells. This individualization could give patients with uniquely mutated tumors a chance for a longer lifespan or remission. In addition, the use of these treatments could reduce reliance on chemotherapy, thereby lessening drug resistance found in cancer patients with tumor recurrences (Ferdows, Bijan Emiliano, et al). Through further funding and research, nanoparticle-based miRNA cancer treatments could become the next big wave of cancer drugs to hit hospitals across the world, giving patients new hope for recovery and life after cancer. 

 

References

Bose RJC, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau K, Bermudez A, Habte F, Pitteri SJ, Sinclair R, Willmann JK, Massoud TF, Gambhir SS, Paulmurugan R. Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents. ACS Nano. 2018 Nov 27;12(11):10817-10832. doi: 10.1021/acsnano.8b02587. Epub 2018 Oct 22. PMID: 30346694; PMCID: PMC6684278.

Ferdows, Bijan Emiliano, et al. “RNA Cancer Nanomedicine: Nanotechnology-Mediated RNA Therapy.” Nanoscale, vol. 14, no. 12, 2022, pp. 4448–55. DOI.org (Crossref), https://doi.org/10.1039/D1NR06991H.

Moro, Massimo, et al. “Coated Cationic Lipid-Nanoparticles Entrapping MiR-660 Inhibit Tumor Growth in Patient-Derived Xenografts Lung Cancer Models.” Journal of Controlled Release, vol. 308, Aug. 2019, pp. 44–56. DOI.org (Crossref), https://doi.org/10.1016/j.jconrel.2019.07.006.

Filed Under: Biology, Chemistry and Biochemistry

Toxin Therapy

March 1, 2021 by Joanna Lin '22

While the growth of mold on fruits and vegetables forgotten in the fridge is not an atypical occurrence, lethal spores slowly sprouting in improperly preserved or fermented foods lead to more than a smelly fridge. The Clostridium botulinum bacterium produces deadly botulinum toxins (BoNT) that destroy proteins critical for the release of acetylcholine, the neurotransmitter primarily responsible for muscular function, into the neuromuscular synapse. The simple bacterium may be microscopic, but its ability to inhibit signals in the muscular network are potent and can induce irreversible paralysis. 

Clostridium botulinum produces lethal toxins that disrupt muscular contraction.
Photo credits: Dr. Phil Luton/Science Photo Library/Corbis

Exocytosis, the release of neurotransmitters into the synapse via vesicle-membrane fusion, primarily requires the complete assembly of three proteins: SNAP-25, syntaxin, and synaptobrevin. The bridging of these proteins between the vesicle and the plasma membrane are crucial for neurotransmitter release. Once the vesicles bind to the plasma membrane, neurotransmitters are released into the synapse and the action potential signals from the presynaptic neurons are sent to the postsynaptic muscle fibers. When these signals are blocked, however, muscle contractions are inhibited — initiating paralysis. 


Several types of botulinum toxins target critical proteins for exocytosis and inhibit the release of acetylcholine.

The structure of BoNT allows it to penetrate neurons and cleave the proteins that transfer the signals for movement. The toxins have 2 subunits, a light and heavy chain, which work together to penetrate the neuron and wreak havoc. The heavy chain dictates which neurons are affected by the toxins by strongly binding to the external membrane. They facilitate the entry of the light chain into the cytoplasm of synaptic terminals, which then disrupts exocytosis by snipping the critical proteins for vesicle-membrane fusion. The structure of the light chain determines which proteins are cleaved. The toxins ultimately causes a paralytic effect by inhibiting membrane fusion of vesicles and acetylcholine release at neuromuscular junctions.

The extreme potency and lethality of botulinum toxins makes them potentially fatal bioweapons. Small amounts of BoNT can be deadly, where “a single gram of crystalline toxin, evenly dispersed and inhaled, can kill more than one million people.” The lethal dose for humans orally is estimated to be 30 ng and by inhalation 0.80 to 0.90 µg. An estimate of only 39.2 g of pure BoNT could eradicate humankind. While the inhibition of neurotransmitter release is irreversible, the paralytic effects are felt in full force by four to seven days after exposure. The long latency of effects can delay alarm and medical treatment. While some paralytic effects may be mediated by the growth of new nerve terminals and synaptic connections, these recovery processes can take up to months.

The lethality of these toxins have been harnessed for a range of purposes, from cosmetic procedures to treatments for movement disorders. BoNT is colloquially well-known as Botox, the drug commonly used to smooth facial wrinkles and enhance a youthful appearance. Beyond the surface, Botox has also been FDA-approved to treat chronic migraines, excessive sweating, and several other medical conditions. Other applications are under investigation, but the botulinum toxins have been found to reduce tremors, tics, muscle spasms, and other movement disorders that derive from debilitating neurological diseases.

The potential uses of these toxins may enhance the quality of life for many people. While the use of deadly botulinum toxins for medical treatments may seem unorthodox, these compounds have proven to be incredibly versatile in their application.

Filed Under: Chemistry and Biochemistry, Psychology and Neuroscience Tagged With: BoNT, C. botulinum, Clostridium botulinum, neurobiology

Primary Sidebar

CATEGORY CLOUD

Biology Chemistry and Biochemistry Computer Science and Tech Environmental Science and EOS Math and Physics Psychology and Neuroscience Science

RECENT POSTS

  • The Anti-cancer and Antimicrobial Activity Associated with Sea Sponge Extracts November 11, 2022
  • Targeting the MYC Proto-Oncogene, BHLH Transcription Factor (MYC) interaction network in B-cell lymphoma via histone deacetylase 6 inhibition November 11, 2022
  • Examining the work of 2022 Nobel Prize in Physiology or Medicine Laureate Svante Pääbo November 6, 2022

FOLLOW US

  • Facebook
  • Twitter

Footer

TAGS

AI AI ethics artificial intelligence Bathymetry BDA Beavers biogeochemistry Biology BoNT C. botulinum Cell Biology Chlorofluorocarbons Clostridium botulinum Cytoskeleton Death Prediction dreams ecology Ethics GPT-3 heterogeneity kleptomania Luis Vidali Marine Biology Marine Mammals Marine noise Montreal Protocol Moss neural network neurobiology online journalists Ozone hole Plants REM serotonin SERT sleep superintelligence textfakes

Copyright © 2023 · students.bowdoin.edu