• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Bowdoin Science Journal

  • Home
  • About
    • Our Mission
    • Our Staff
  • Sections
    • Biology
    • Chemistry and Biochemistry
    • Math and Physics
    • Computer Science and Technology
    • Environmental Science and EOS
    • Honors Projects
    • Psychology and Neuroscience
  • Contact Us
  • Fun Links
  • Subscribe

AI – save or ruin the environment?

December 8, 2024 by Madina Sotvoldieva

With the fast speed that AI is currently developing, it has the potential to alleviate one of the most pressing problems—climate change. AI applications, such as smart electricity grids and sustainable agriculture, are predicted to mitigate environmental issues. On the flip side, the integration of AI in this field can also be counterproductive because of the high energy demand of the systems. If AI helps us to transition to a more sustainable lifestyle, the question is, at what cost?

The last decade saw exponential growth in data demand and the development of Large Language Models (LLMs)–computational models such as ChatGPT, designed to generate natural language. The algorithms resulted in increased energy consumption because of the big data volumes and computational power required, as well as increased water consumption needed to refrigerate data centers with that data. This consequently leads to higher greenhouse gas emissions (Fig.1). For example, the training of GPT-3 on a 500 billion-word database produced around 550 tons of carbon dioxide, equivalent to flying 33 times from Australia to the UK [1]. Moreover, information and communications technology (ICT) accounts for 3.9% of global greenhouse gas emissions (surpassing global air travel) [2]. As the number of training parameters grows, so does the energy consumption. It is expected to reach over 30% of the world’s total energy consumption by 2030. These environmental concerns about AI implementation led to a new term—Green AI.

Fig 1: CO2 equivalent emissions for training ML models (blue) and real-life cases (violet). In brackets, the billions of parameters are adjusted for each model [3].

Green algorithms are defined in two ways: green-in and green-by AI (Fig. 2). Algorithms that support the use of technology to tackle environmental issues are referred to as green-by AI. Green-in-design algorithms (green-in AI), on the other hand, are those that maximize energy efficiency to reduce the environmental impact of AI. 

 

Fig. 2. Overview of green-in vs. green-by algorithms.

 

Green-by AI has the potential to reduce greenhouse gas emissions by enhancing efficiency across many sectors, such as agriculture, biodiversity management, transportation, smart mobility, etc. 

  • Energy Efficiency. Machine Learning (ML) algorithms can optimize heating, air conditioning, and lighting by analyzing the data from the smart buildings, making them more energy efficient [4][5]. 
  • Smart Mobility. AI can predict and avoid traffic congestion by analyzing the current traffic patterns and optimizing routes. Moreover, ML contributes to Autonomous Vehicles by executing tasks like road following and obstacle detection, which improves overall road safety [6].
  • Sustainable agriculture. Data from sensors and satellites analyzed by ML can give farmers insights into crop health, soil conditions, and irrigation needs. This enables them to use the resources with precision and reduce environmental impacts. Moreover, predictive analytics minimize crop loss by allowing farmers to aid the diseases on time [7].
  • Climate Change. Computer-vision technologies can detect methane leaks in gas pipes, reducing emissions from fossil fuels. AI also plays a crucial role in reducing electricity usage by predicting demand and supply from solar and wind power.
  • Environmental Policies. AI’s ability to process data, identify trends, and predict outcomes will enable policymakers to come up with effective strategies to combat environmental issues [8].

Green-in AI, on the other hand, is an energy-efficient AI with a low carbon footprint, better quality data, and logical transparency. To ensure people’s trust, it offers clear and rational decision-making processes, thus also making it socially sustainable. Several promising approaches to reaching the green-in AI include algorithm, hardware, and data center optimization. Specifically, more efficient graphic processing units (GPUs) or parallelization (distributing computation among several processing cores) can reduce the environmental impacts of training AI. Anthony et al. proved that increasing the number of processing units to 15 will decrease greenhouse gas emissions [9]. However, the reduction in runtime must be significant enough for the parallelization method not to become counterproductive (when the execution time reduction is smaller than the increase in the number of cores, the emissions deteriorate). Other methods include computation at the locations where the data is collected to avoid data transmissions and limit the number of times an algorithm is run. 

Now that we know about AI’s impact and the ways to reduce it, what trends can we expect in the future? 

  • Hardware: Innovation in hardware design is focused on creating both eco-friendly and powerful AI accelerators, which can minimize energy consumption [10].
  • Neuromorphic computing is an emerging area in the computing technology field, aiming to create more efficient computing systems. It draws inspiration from the human brain, which performs complex tasks with much less energy than conventional computers. 
  • Energy-harvesting AI devices. Researchers are exploring the ways in which AI can harvest energy from its surroundings, for example from the lights or heat [11]. This way, AI can rely less on external power and become self-sufficient.

In conclusion, while AI holds great potential in alleviating many environmental issues, we should not forget about its own negative impact. While training AI models results in excessive greenhouse gas emissions, there are many ways to reduce energy consumption and make AI more environmentally friendly. Although we discussed several future trends in green-in AI, it is important to remember this field is still continuously evolving and new innovations will emerge in the future.

References:

[1] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, J. Dean, Carbon emissions and large neural network training, 2021, arXiv:2104.10350.

[2] Bran, Knowles. “ACM TCP TechBrief on Computing and Carbon Emissions.” Association for Computing Machinery, Nov. 2021  www.acm.org/media-center/2021/october/tpc-tech-brief-climate-change  

[3] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, and Jack Clark, “The AI Index 2024 Annual Report,” AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA, April 2024. 

[4] N. Milojevic-Dupont, F. Creutzig, Machine learning for geographically differentiated climate change mitigation in urban areas, Sustainable Cities Soc. 64 (2021) 102526.

[5] T.M. Ghazal, M.K. Hasan, M. Ahmad, H.M. Alzoubi, M. Alshurideh, Machine learning approaches for sustainable cities using internet of things, in: The Effect of Information Technology on Business and Marketing Intelligence Systems, Springer, 2023, pp. 1969–1986.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., End to end learning for self-driving cars, 2016, arXiv preprint arXiv:1604.07316. 

[7] R. Sharma, S.S. Kamble, A. Gunasekaran, V. Kumar, A. Kumar, A systematic literature review on machine learning applications for sustainable agriculture supply chain performance, Comput. Oper. Res. 119 (2020) 104926.

[8] N. Sánchez-Maroño, A. Rodríguez Arias, I. Lema-Lago, B. Guijarro-Berdiñas, A. Dumitru, A. Alonso-Betanzos, How agent-based modeling can help to foster sustainability projects, in: 26th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES, 2022.

[9] L.F.W. Anthony, B. Kanding, R. Selvan, Carbontracker: Tracking and predicting the carbon footprint of training deep learning models, 2020, arXiv preprint arXiv:2007.03051. 

[10] H. Rahmani, D. Shetty, M. Wagih, Y. Ghasempour, V. Palazzi, N.B. Carvalho, R. Correia, A. Costanzo, D. Vital, F. Alimenti, et al., Next-generation IoT devices: Sustainable eco-friendly manufacturing, energy harvesting, and wireless connectivity, IEEE J. Microw. 3 (1) (2023) 237–255.

[11]  Divya S., Panda S., Hajra S., Jeyaraj R., Paul A., Park S.H., Kim H.J., Oh T.H.

Smart data processing for energy harvesting systems using artificial intelligence

Filed Under: Computer Science and Tech Tagged With: AI, climate change, emissions, green-by AI, green-in AI, Language Models, sustainability, Technology

Primary Sidebar

CATEGORY CLOUD

Biology Chemistry and Biochemistry Computer Science and Tech Environmental Science and EOS Honors Projects Math and Physics Psychology and Neuroscience Science

RECENT POSTS

  • Biological ChatGPT: Rewriting Life With Evo 2 May 4, 2025
  • Unsupervised Thematic Clustering for Genre Classification in Literary Texts May 4, 2025
  • Motor Brain-Computer Interface Reanimates Paralyzed Hand May 4, 2025

FOLLOW US

  • Facebook
  • Twitter

Footer

TAGS

AI AI ethics Alzheimer's Disease antibiotics artificial intelligence bacteria Bathymetry Beavers Biology brain Cancer Biology Cell Biology Chemistry and Biochemistry Chlorofluorocarbons climate change Computer Science and Tech CRISPR Cytoskeleton Depression dreams epigenetics Ethics Genes honors Luis Vidali Marine Biology Marine Mammals Marine noise Medicine memory Montreal Protocol Moss neurobiology neuroscience Nutrients Ozone hole Plants Psychology and Neuroscience REM seabirds sleep student superintelligence Technology therapy

Copyright © 2025 · students.bowdoin.edu